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Greenbel; , ; k ry l and  

P iile motion of elements i n  a f lu id  lzyer ~ u ~ a ~ = ~ i  "L bo  forces  i s  d iv i sab le  

i n t o  a genera l  systematic  one and i n t o  another  one due t o  eddies  of d i f f e r i n g  

sizes subject  t o  :random f luc tua t ions .  

or nc ' ? y  of t h e  following conditions i s  s a t i s f i e d :  

Convective motion takes  place i f  one, 

E) %:e lever su r l ace  of a rC"lui0 l e y e r  i s  heated r e l a t i v e  t o  the t o p  

layer. 

' 0 )  The t o p  l a y e r  of t h e  f l u i d  i s  cooled r e l a t i v e  t o  t h e  lower l aye r .  

c )  A f l u i d  of r e l a t i v e l y  less dens i ty  i s  in j ec t ed  at  lower l e v e l s .  

d) Ore, or more, of the ebove cocd i t io r s  i s  eo-nbiced with Cor io l i s  

7 -  forces  o r  a rnrgnetic T i e i d  i-i case of alz icriized fluid. 

Tne f i n i t e  values GI? viscos i ty ,  concuct ivi ty  o r  Z i f f u s i v i t y  of a f l u i d  

al low tGpheavineso t o  ';e ixaiotEired before  the  onset of convective i n s t a b i l i t y .  

When t h e  temperature height  d i s t r i b u t i o n  axtier stea6y ccnd i t ions  i s  not l i n e a r ,  

as i n  a gas 

SISTORICAL 

S G ~ X  r e m r k s  a re  c a l l e d  l o r .  This i s  at-cempted here .  

Ear ly  i n  t h i s  century, &nard (1901) showed t h a t  when t h e  lower surface of 

heated, convective i n s t a b i l i t y  set i n  only a f te r  a t h i n  viscous l i q u i d  l a y e r  

t h e  t e q e r a t u r e  d i f fe rence  between the lower and upper surfaces  exceeded a l imi t ing  

va lue .  

Aichi (1907) and h y l e i g h  (1916) derived a quan t i t a t ive  c r i t e r i o n  of t h e  

2;ossibk top heav-iness that could be maintained i n  a t h i n  viscous l i q u i d  lzye1. :.L 

frcm b e h v  lciefore t h e  onset of i n s t a b i l i t y  based on t h e  hydrodpamiml  equation: 

. .. 

of ;y+sA;iGyl 02 "did .myeTS, the e2uzti.m of cont inui ty ,  ;he equat ion of s t e t €  

_. , . _ _  L,-Ac .;"̂  L 7  viis ~~~~~~-~~ 23 0;' trans2GT.t 15q~;ds fo i lawirg  Soussinesqe under stesc.7 



' ' r .  

Early i n  th i s ,  century, Eenard found that thin, viscous l i q u i d  layers 
( 

heated from belov broke up i n t o  a l m o s t  reg:ular polygonal c e l l s .  

t h e o r e t i c a l  inves t iga t ions ,  expressions were obtained f o r  t h e  c r i t i c a l  temperaturc: 

gradients ,  it beipg assumed constant with height,  f o r  t h e  orxet of i n s t a b i l i t y .  

bkasurements i n  t h e  atmosphere indicated t h a t  t h e  temperature differences betweex 

layers  ::-a- the  ground of ten  attain severa l  times t h e  m a x i m u m  predicted temperat;ii.e 

d i f fe rences .  

s ine )  temperature d i s t r i b u t i o n  as found by measurements . 
dTstr ibut ion could i n  t u r n  be explained i n  terms of r s d i a t i v e  heat t r a n s f e r  due 

t o  l aye r s  of water vaFour i n  the stnosphere. 

From e a r l i e r  

This could be p a r t l y  accounted f o r  by the  use of nonlinear (hy-perbolic 

The temperature heignt  

The corresponding problems with 

exponent ia l  and s i r c s o i d a l  tem2er2mre d i s t r ibL t ions  kave now been solved. 

Exp l i c i t  c r i t e r i a  Poi- t he  onszt of corn-ective i n s t a b i l l z y  have 'otc:1 obtained. 

Tne c r i t i c a l  temperazure differzrice is  l a r g e r  (smaller) i f  t he  temperature - 

height curve i s  coneeve (convex) upTtrards. 
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coirdit,? om,  t h e  temperature decrease2 l i n e a r l y  with height i n  the  l i q u i d .  

Rayleigh reduced ifhe problem t o  t h e  so lu t ion  of a s ing le  s i x t h  order l i n e a r  

d i f f e r e n t i a l  equation with constagt coe f f i c i en t  s . 
both t o p  and bottom f r e e  

Under ijoundary conditions : c'fi i /  f i  
(i) he derived t h a t  R = Bgpc T" / kVQOn4 < - 27 P 4 d 

where p i s  t h e  derisity of the  l iquid,  

c? t he  spec i f i c  heat  at constant pressure,  

k t h e  coef f ic ien t  of molecular conductivity,  

v the  coef f ic ien t  of moleculsr v i scos i ty ,  

'2 t he  thickness  of t he  f l u i d  layer ,  

80 a constent reference temperature, 

g the  value of grav i ty ,  and 

9 t he  negative gradient  of texperature with height i n  the  l i q u i d  l aye r  

( t h e  value of B i s  taken as positTve).  ITI s l i q u i d  layer ,  Y O o  i s  replaced by 

the  coe f f i c i en t  of t h e r m 1  expansim.  

Tne a c t u a l  values of v i scos i ty  and conduct ivi ty  a r e  very small i n  a i r  t h a t  

f o r  c r i t e r i a  t he re ,  l a r g e r  corresponding e n t i t i e s  based on eddy considerations 

(eddy conduct ivi ty  o r  d i f fus iv i ty )  by G.I. Taylor (1915) have been used. 

and Brunt (1923) s.pgiied the  c r i t e r i o n  t o  der ive the niiximuii possible  temperature 

grad ien t  with ?e ight  c i n  t h e  lower atlrosphere par t icu larpy  near the  ground. 

Low 

Je f f r eys  (1926, 1928) solved the s i x t h  or6er d i f f e r e n t i a l  equation with both 

t h e  boundaries &s r i g i d .  

s u b s t i t u t i o n  oT a Fourier  expansion i n  t h e  d i f f e r e n t i a l  equation l e d  t o  d i f f i -  

i n  h i s  laxer  paper (1928) he s t a t e d  t h a t  a d i r e c t  

dli"fer -o-: - 

c.2 consldereCizhe ease when one boundary w a s  f r e e  and the  other  r i g i d .  

L - A ~ ~ a . l  cI;&rBT;or o f t h e  equation comide r i rg  it as a sum of two cubes. 
L A 3  _ _  

t !  

n -  i G 9  heaviness i n  a l i q u i d  la-yer could be had by gouring a highly v o l a t i l e  
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The number of s ides  of t he  possible regular  polygonal c e l l s  i n  which the  

l i q u i d  sheet breaks up, due t o  convective i n s t a b i l i t y ,  had seve ra l  times been 

&ven as 3 to 7. on grounds of syrmetry, only regular  Iiexagons, squares, 

e q u i l a t e r a l  t r i a n g l e s  and p a r a l l e l  bands a r e  only poss ib le .  

1937a) . 
(Malurkar, 1936, 

Exl?erircentally, from about 1928, c rea t ion  of polygonal c e l l s  i n  l i q u i d  

m;xcures w a s  once again undertaken a t  t he  Imperial  College of Science and 

Teciinoiogy (London) by Gilber t  T. Walker and h i s  co l labora tors  t o  f i n d  analogies  

t o  cloud pa t t e rns .  

attempted v e r i f i c a t i o n s  of t heo r i e s  with a view t o  meteorological appl ica t ions .  

Schinidt and Yilverton (1935), a l s o  i n  t h e  same College, ca r r i ed  out e labcra te  

experimental confirmations i n  t h e  Engineering Sect ion.  

Later, k v i d  Brunt and h i s  eo-workers i n  the  same College 

In  discussing 'Dynamics of T'hmderstorms ', the  author  ( 1937a, 1943) t r ied 

t o  snow t h a t  t h e  convective i n s t a b i l i t y  broughz about by uniformly s t r a t i f i e d  

t o p  heaviness could not give rise t o  t he  i n s t a b i l i t y  needed i n  thunderstorms 

(as used t o  be s t a t e d  of ten  po ten t i a l ly  colder  a i r  being superposed on po ten t i a l ly  

warmer a i r  i n i t i a t i n g  and maintaining thunderstorms) . 
t o p  heaviness brought about by t h e  superposit ion of f l u i d  l aye r s  of differing 

dens i ty  w a s  b r i e f l y  considered (e .g .  a d ry  stream over a moist one).  

I n  t h a t  discussion, the  

The thermal 

s t r u c t u r e  w a s  taken f o r  s impl i c i ty  as isothermal.  

w a s  replaced by t h e  d i f fus ion  equation (F ick ' s )  . 
w a s  taken as l i n e a r .  

mation. 

t l x  d i f fe rence  of dens i ty  of t o p  and bottom l a y e r s  almost similar t o  Rayleigh 

ci-izerion above. 

The equation of heat  t r anspor t  

The dens i ty  va r i a t ion  with height 

The var ia t ions  i n  v i scos i ty  were ignored to a first  approx:.- 

The c r i t e r i o n  of convective i n s t a b i l i t y  could be expressed i n  terms of 



4 

ROLE OF RriDIATION EFFECT 

The a c t u a l  temperature gradient with height near  t he  ground on sunny 

days w a s  much more than t h e  l i m i t s  obtained above. 

hypothesis, t he  one about the  modification introduced by r ad ia t ive  t r a n s f e r  

seemed promising. George C. Simpson (1928) had attempted t o  f i t  numerically 

a temperature height curve of t he  atmosphere by taking account of t h e  e f f e c t  

Among t h e  add i t iona l  

of t h e  s t r a t i f i e d  layers  of water vapour on the  r ad ia t ive  t r a n s f e r  of heat 

r ad ia t ion .  

of water vapour i n  layers ,  on the  equation of heat t r anspor t .  

t h e  eddy d i f f u s i v i t y  t e r m  i n  the  Taylor type equation, one due t o  rad ia t ion  

(Kz + sR ins tead  of KE). 

Brunt (1929, 30) considered t h e  modification, due t o  the  e f f e c t  

He added t o  

The form of t h e  equation of heat t r a n s f e r  remained 

unchanged. 

l i n e a r .  

Under steady conditions, t h e  temperature height curve remained 

But  t h e  temperature mzasurements, on a hot sunny afternoon near t he  

ground ( f l a t  surface) which w a s  producing i n f e r i o r  mirages showed t h a t  i n  

about t h e  f i rs t  twenty centimeter layer,  it decreased with height as a hyper- 

b o l i c  s ine  curve. 

Temperature could be considered as almost constant.  

1932).  

h l u r k a r ,  1932) WRS a l s o  found t o  be s imi l a r .  

A t  similar height i n t e rva l s ,  above t h a t  height,  t h e  

( L%lurkar and Raadas, 

The temperature height  curve over a heated flat p l a t e  (Ramdas and 

I n  t h e  smll height i n t e r v a l  

T wilere sh the  mean temperature gradient w a s  l a rge ,  the  difference between the  

bottom and t h e  top  layers  was t e n  o r  more times t h e  expected maximum value 

given by Brunt (1930).  Valurkar and Ramdas (1932) advanced an explanation 

Tor t h e  hyperbolic s ine  temperature height curve by assuming t h a t  heat rad ia t ion  

was absorbed and emitted i n  successive layers of water vapour near  t h e  ground. 

The t e r m  due t o  r ad ia t ion  w a s  found t o  be d i s t i n c t  and could not be added t o  

the kezt  d l f f m i v i t y  coe f f i c i en t .  

t'?.- I dCI - t p e  tern due t o  r ad ia t ion  w a s  not similar t o  one due t o  heat d i f fus iv i ty .  

Roberts (1929-30) had e a r l i e r  shown t h a t  



- .  

. .  

5 

The r ad ia t ive  e f f e c t s  depend on t h e  temperature and absorptive contents of 

even d i s t an t  layers while the  d i f f u s i v i t y  or heat conductivity e f f e c t s  depend 

on l o c a l  grad ien ts  of temperature and of dens i ty .  Treating t h e  e f f e c t s  of 

rad ia t ion  and of heat diffusion as of d i s t i n c t  types,  a small temperature 

disturbance a t  a lower l e v e l  would get damped i n  i t s  progressive movement 

upwards (Malurkar, 1934) . 
Under steady conditions, t he  modifications could explain a hyperbolic 

- 
s ine  temperature height cruve. The nature of t h e  temperature height curve and t h e  

mximum possible  temperature difference that could be maintained i n  a top  

heavy l aye r  .of f l u i d  for a given temperature height curve could be t r e a t e d  

as two independent p a r t s  of a problem. (klurkar, 1 9 3 7 ~ ) .  I n  t h e  equation 

of heat t r anspor t ,  t h e  addi t ion  of terms due t o  r ad ia t ive  e f f ec t ,  could from 

a purely mathematical point  of view be ccnsidered even as empir ical  addi t ions  

from observations.  The v a l i d i t y  of the  explanation of t he  temperature height 

curve would not prejudice the  der ivat ion of the  possible  maximum temperature 

difference between t h e  two layers. 

, 

Digressing‘ s l i g h t l y ;  i f ,  i n  - layer  of f l u i d ,  t h e  temperature height curve 
1, 

( c?, 2) i s  concave upwards, t h e  value of d2q i s  pos i t ive .  Then under s teady 9 rrLc -LL - z? I >: pi. 
conditions,  t he  temperature a t  every level-is lmer than i n  t h e  l i n e a r  case., 

it shows t h a t  less heat  has  been car r ied  up from t h e  source at  the  bottom t o  

every higher l e v e l  or t h a t  more heat i s  t r ans fe r r ed  or d iss ipa ted  away from every 

l eve l  than I n  t h e  case of a l i n e a r  curve. 

away hea t  from every layer might be r ad ia t ion  from successive l e v e l s  r e su l t i ng  

I n  a net  l o s s  of hea t .  

A possible  mechanism which could car ry  

It i s  conceivable t h a t  t he re  might be rare instances 

when the re  i s  a net  gain of heat i n  every l a y e r  due t o  some process. 

d’cp negative . temperature height curve would be convex upwards and 

Then the  

- 
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G i l e  i n  t h e  case of l i qu ids ,  the temperature height d i s t r i b u t i o n  is  l i n e a r ,  

i n  t h e  case of gas l aye r s  it would be t o o  much of a r e s t r i c t i o n .  

u se fu l  t o  ,obtain c r i t e r i a  of convective i n s t a b i l i t y  of f l u i d s  when under s teady 

conditions,  t he  temperature height curve is  concave or convex upwards. 

KI3SIjDE OF THE KYPEXI3OLIC SINE C W E  CASE 

It would be 

If 2 i s  t h e  height measured upwards, t h e  temperature height  s t r u c t u r e  for  - 
t h e  varying p a r t  w a s  taken as 

PT s inh a (T-Z) or p T s inh  y4 
si& aT sinh ny 

i f  n 

B i s  

i s  a 

(ii) (T-Z) = TS and m/ = aT . . . 
now t h e  mean negative gradient  of temperature between 0 and T, and a2 

constant .  The r e su l t i ng  bas i c  d i f f e r e n t i a l  equation was: 

- 
i f  b2 = a2 f y2 

(djds'2 - a2)2 sech y s  (d7ds' - b2) x = -Ra 2 m cosech nr x . . . (5-i i) 

where x w a s  a func t ion  of t he  temperature, a2 was a constant and o ther  symbols 

have been explained earlier. 

The equation s impl i f ies  t o  those of Aichi, Rayleigh and others  i f  y = 0. 

The methods of so lu t ion  adopted by Jeff'reys and Low f o r  l i n e a r  d i f f e r e n t i a l  

equat ions w i t h  constant coef f ic ien ts  could not be extended e a s i l y .  

formulated, f o r  t h e  f i rs t  t i m e ,  t h e  use of a s e r i e s  so lu t ion  f o r  t he  type of 

equa-cions, a r i s i n g  i n  s t a b i l i t y  problems. 

expansion i n  a s e t  of orthogonal functions i n  t h e  d i f f e r e n t i a l  equation, the  l a t t e r  

v7as split up i n t o  two s u i t a b l e  pa r t s  and t h e  series expansion w a s  subs t i t u t ed  i n  

&lurkar  (193-j) 

Instead of a d i r e c t  subs t i t u t ion  of an 

ocly one p a r t .  The r e s u l t i n g  d i f f e r e n t i a l  equation was completely solved taking 
, 

account of boundary conditions. '  A comparision of t h i s  so lu t ion  with t h e  i n i t i a l  

assumption l e d  t o  an e x p l i c i t  determination of a l l  the  coe f f i c i en t s .  

and Sr ivas tava  (1937) v e r i f i e d  that the method l e d  t o  e a r l i e r  r e s u l t s  by solving 

a s l i g h t l y  genera l i sed  by le igh - Je f f r eys  equation. 

k l u r k a r  
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The above l e d  t o  a consistency condition of an i n f i n i t e  determinant 

The value of Ra" could be obtained by successive being equated t o  zero.  

approximations. To a first approximation, t h e  smallest value of Ra" i n  

the  case when both boundary surfaces  are taken as free (Rayleigh type) ,  

l eads  to . the  maximum temperature difference c r i t e r i o n :  

- 

2 
w i t h  a = 8 (see later f o r  t h e  minimal value) t he  above i s  reduced t o  

(1 + - l1 y2). &en f o r  other  types of boundary conditions,  t h e  c r i t e r i a  12 

of maximum possible  temperature difference increased. 

Considerable work on f l u i d  i n s t a b i l i t y  has appeared i n  i t s  various 

aspec ts  i n  recent years .  A reference t o  later memoirs and treatises (Sutton, 

1950; Backus, 1955; Lin, 1955; Chandrasekhar, 1961) may be made. 

t h e  equation of heat t r anspor t  has been n e a r l y t h e  same as that given by 

However, . 
Rayleigh. 

EXPONENTIAL TEMPEXATEKE - HEIGHT CURVE 

The same equation of heat t ranspor t  used for t h e  hyperbolic s ine  temper- 
' 

a t u r e  height  decrease i s  v a l i d  a l s o  f o r  t h e  exponential  temperature height 

decrease case. Such exponential  temperature decrease with height can occur 

i n  geophysical problems. 

EQUATIONS 

Take xyz as a rectangular  system of coordinates with z a x i s  d i rec ted  
''i c; ;< 1 2.9 
kC 42wards; u, v, and w as components of ve loc i ty  i n  a f l u i d  layer ;  pas t h e  1 

dens i ty  of t h e  f l u i d ;  as t h e  pressure at  xyz; g as t h e  value of gravi ty;  P 
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u as t h e  kinematic coe f f i c i en t  of v i scos i ty  and u t  as the second coef f ic ien t  

of v i scos i ty .  The equations of motion can be wr i t t en  as: 

'V / I p d/dt (u,v,w) - y@u,v,~) - ( ~ 3  + u 1 )  8 (a/,% a/ay, a/az) 

a/ay, a/,z)/j - ( o ,  0, p g )  

,' 

( A , / ~ # +  av /a7 + aw /a2 = - ( 1) 

where B2 = ajax2 + 'jay2 + a73z2 

The equat ion of cont inui ty  i s  

If E be the heat energy t h a t  crosses a un i t  layer at xyz apa r t  from 

t h a t  due t o  heat  conduct ivi ty  o r  d i f f u s i v i t y ,  and i f  cp be t h e  temperature 

i n  excess of a given constant one eo ( a t t a i n e d  above a c e r t a i n  he igh t ) ,  

t h e  equat ion of heat t r anspor t  can be: 

pp*/dt = kf"cp - ( a E / a ~ +  aE  /ay + 
(3) 

If t h e  t o t a l  va r i a t ion  of temperature i n  t h e  layer i s  small compared with 

t h e  a c t u a l  magnitude of temperature involved, t h i s  equation can be simplitt?ied 

t o  a g o d  approximation, t o  

j@cp dcp/dt = k(.vcp - u2cp) 

where a2 i s  a constant .  ( k l u r k a r  and Randas, 1932; and Wurkar, 1932). 

If the va r i a t ions  of pressure i n  the  l a y e r  are small enough t o  be 

( 5 )  neglected,  t h e  equation of s t a t e  would be: 

Apart from t h a t  due t o  t h i s  temperature e f f e c t ,  t he  dens i ty  va r i a t ions  i n  

t h e  layer become and are taken here as neg l ig ib l e .  

( e o  + cp) = pOQo 

Assuming t h a t  s teady conditions e x i s t ,  t he  equations (1) t o  (4) reduce I 

to: 
2 

/az2 = a 
api la ,  + g p  = 0 and a2Ti 

. where 'i i s  t h e  subscr ip t  denoting steady condi t ions.  Let p = p i + p  ' j  

p = p i  + p '  e t c .  Neglecting the  squares and products of small q u a n t i t i e s  
i 



- .  . -. 

9 

( departure dy condi t ions) ,  t k  above can 1: s impl i f i ed  as before 

and 

For 

neglected i n  comparision w i t h  t h e  other ones. Hence equation (8) become?. 

when 6 / 6 t  = 0 i n  the  above and hence 

, 

TO t h e  same order of approximation, the s teady state of value of 

could be subs t i t u t ed  i n  the denominator of t h e  f i rs t  term. 

Assume, as usual ,  t h a t  cp' = XE i(lx?-my) where ,-q ' = 'p - T i .  Then 

- (4) 
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The temperature height curve i n  case of an  exponential  decrease of 
&i c LL2'  

-* temperature with height can be taken as T i  = 'BTeu(T-g /( e U T 4  #- 

where T is  the  thickness  or depth of t h e  f l u i d  l a y e r  and f) i s  t h e  mean 

Eegative gradient  of temperature with he ight .  
p i :  f.- 

Choosing a new var iab le  Tg=n(T-Z) and with t h e  nota t ion  If? = UT; &,lz Y - 
n2a2 = ? ( e + m 2 )  and b2 = a2 + the  bas i c  equation of t h e  problem reduces t o :  

where R = f ) g p ~ ~ T ~ / k u @ ~ ~ .  

As t h e  grad ien t  of temperature with height i s  not constant,  t h i s  l i n e a r  

d i f f e r e n t i a l  equation has a l s o  not go t  constant coeef ic ien ts .  

so lu t ion  fol1ow.s t h a t  used earlier. (There are seve ra l  misprints  on p .  274 

and p .  275 i n  h l u r k a r ,  1937~;  but htye have not been ca r r i ed  over in la ter  

The method of 

pages .I 0 %  ' f ( 7 ; r )  g sin.ss 
I n  t h e  i n t e r v a l  t h a t  x = > 

' Q3) s= i ,  , -  

Subs t i t u t e  t h i s  series for x only on t h e  r i g h t  hand s ide  of equation (12). 

This equation i s  solved, by tak ing  i n i t i a l l y  

. . *  c I?-> 
I 

I 



where Ao, Bo, 4 and 

conditions.  

a r e  constants depending on p a r t i c u l a r  boundary 

Though the method of solut ion could be used t o  solve e x p l i c i t l y  

f o r  x, t he  c r i t e r i o n  of convective i n s t a b i l i t y  under usual type of boundary 

conditions could be had from the  above s t eps .  

x ge t  incorporated without i t s  being evaluated e x p l i c i t l y .  

conditions are : 

The boundary conditions for 

The usual  boundary 

(a) x, y, d2Y/dS2 = 0 at  5 = 0 and at  5 = TT 

(b)  x, ', dY/dS = 0 at 5 = 0 and at 5 = TT (Both Rigid. 

(c )  x, Y, d2Y/dsz = 0 a t  5 = 0 and x, Y, dy/d5 = 0 at 

(Both - Free. .Rayleigh t y p e ) .  

Je f f reys  t y p e ) .  

= rr (One 

Free and the  o ther  Rigid. Low and C h a n d v a -  - 
m s e k h a r  type) .  

With'the fou r  common boundary conditions and with two constants A and B; 

Cc .>zring the  coe f f i c i en t s  of Sin ns. it f o l l u w s & L ~ :  



fl c . .  -~ . .. 

The o ther  addi t iona l  boundary condi t ions 02' equatior, (16) 

lead t o  an i n f i n t e  number of equations l i n e a r  i n  :%'s . Bn Lii"lr.lte 

det&rninant  wlnicli has t o  vanish E O ~ ~ O T I S  as a condition of ccnsistency. 

' X e  elenients of the  determinact my be denoted a s  JaS 

- 9 s  

The va~.ues of T 

when 
c 

I '  - I' /Bs:2 2 . a  / 

. The diagonal elements -zould then be 

for &iff erent boundarj conditions are s t a t e d  :x?:?t!: 

- / r ts  



.. 

t h e  valw of is given 

zire taken as r i g i d  

by t h e  equatlon : 

(Jeffreys t y p  1, 



/ 

When bo$h doundaries a& t'aken as f r e e  f ylei&&q& the  terms 
, .-- L- - y--- 

become simple, and 

When t h e  t o p  boundary i s  taken as f r e e  and t h e  lower one as r i g i d  - 
(Low and Chandrasekhar ty-pe) then 



The consistency i n f i n i t e  determinants vanish only f o r  d i s c r e t e  values 

of Rad; which,in any p a r t i c u l a r  case,could be got by successive approximations. 

The elements of t h e  determinant decrease rap id ly  with increase of n or of s .  

The working would not be prohib i t ive .  

s ine temperature height curve, t h e  determinant breaks up when $ =  0, corres- 

ponding t o  the  odd and even so lu t ions .  

chosen, and i n  t h e  degenerate case when 

se lec ted .  

of t h e  dqene racy  (a  type of symmetry) i n  t h e  s t a b i l i t y  configurat ions.  

would have t o  be d e a l t  with separately.  

As  i n  t he  case of t h e  hyperbolic 

/ 

The smallest root  of Ra2 has t o  be 

= 0, t h e  odd so lu t ion  has t o  be - 
The non- l inear i ty  of the temperature height curve removes a pa r t  

This 

I n  t h e  p a r t i c u l a r  case of both boundaries being taken as f r e e  (Rayleigh 

type ) ,  t h e  diagonal elements of the i n f i n i t e  determinant have t h e  same form, 

whether t h e  temperature hegiht decrease follows the  hyperbolic s ine  or 

exponential  curve : 

- 

Eowever, for t he  same di f fe rence  of temperature between t h e  t o p  and bottom 

boundaries and f o r  t h e  same depth or thickness  of t he  f l u i d  layer, t h e  value 

of r would not be t h e  same i n  t h e  two cases .  Under the  above conditions,  t h e  

c r i t e r i a  of t h e  maximum poss ib le  temperature d i f fe rence  between t h e  lower 

and upper bomdar ies  of t h e  f h i d  have, t o  a first approximation, neglect ing 

g4, t h e  same form f o r  t h e  exponential  and t h e  hyperbolic s ine  temperature 

height curves given by: 

I 

Ra2 = ( l+f2/4) --- ( l+a2+Y2) ( l+a2) or ( l+a2) 3[1+( 5+a2) - f2/4( l+a2) ] - . ( 2 3 )  
27/, . I f f . ?  

\.-F '2 / 4 . 2  
The value t o  be taken f o r  a2 i s  1/2+1/6Y2+0(r4) leading t o  R = 

xegiect ing r' . 
- 

14 The value of R remains unchaged, to a first  approximation, - 
whether t h e  value of a' (charac te r i s ing  the  p a t t e r n  i n  t h e  ho r i zon ta l  plane) 

i s  t a k e n  I'rom the  constant gradient of temperature with height or with the  



exponential  and the  hyperbolic s ine  temperature height curves. It follows 

t h a t  while t h e  non- l inear i ty  of t h e  above temgerature height curves modify 

the  nor izonta l  pa-tterns and t h e  maxirum possible  temperature d i f fe rence  t h a t  

could be maintained, t h e  f u r t h e r  e f f e c t  of t h e  change i n  t h e  hor izonta l  

pa t t e rn  on the  possible  m a x i m u m  temperature d i f fe rence  can t o  a first approx- , 

i m t i c n  be neglected.  

condi t ions.  

Similar  r e s u l t s  hold good f o r  o ther  types of boundary 

For t he  other  two types of boundary conditions a l so ,  the  increase i n  

the  c r i t e r i o n  of t h e  maximum temperature d i f fe rence  between t h e  t o p  and 

bottom l aye r s  of a t o p  heavy f l u i d  s t ruc tu re  would e x i s t .  

have been shown oiily f o r  the  heperbolic s ine and the  exponential  temperature 

While ca lcu la t ions  

height  cruves, it would be apparent t h a t  these  represent  curves which are 

concave upwards. It can be s t a t e d  t h a t  t h e  c r i t e r i o n  of t he  maximum possible  

temperature difference between t h e  bottom and t o p  layers of a t o p  heavy f l u i d  

l a y e r  increases  when t h e  temperature height cruve i s  concave upwards, from 

t h e  value f o r  E l i n e a r  temperature height s t r u c t u r e .  The increase i n  t h e  

value of t h e  maxiinurn possible  temperature d i f fe rence  would Se an increasing 

func t ion  of t he  departure from l i n e a r i t y  of t h e  temperature height curves, 

considering those of any one family. 

A representa t ive  case of a temperature height  decrease curve being convex 

up.:rerds can be taken with t h e  va r i a t iona l  pa r t  of t h e  temperature as 

(24) 
. I  ' 'i 

;4'+;>, PT s i n  + 
i 1% * jj. -- 
' \ ( d Y J '  

s i n  I-$( ~ - z / T )  

The corresponding equation of heat t ranspor t  
L 

i n  t h e  l n t e r v a l  0 < Z < T. 

would have t o  be taken as: 
n 2 Y 2  

3 Cp dcp/dt = k(A2+ 
1 
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Y? L* where r 2 i s  a constant r e s t r i c t e d  t o  only small values:  i- * r 2  < < h 
- - -  ' ( ( 1 , i k Y  u 

/([-((/I 7-& 
/i 

0 Following exac t ly  as before,  with a similar notat ion,  t he  bas ic  

equation could be wr i t t en  as: 

( 26) (~2 /c?52  - a2)'rsez ~ ~ ( ~ 2 / ~ ~ 2  - a2 + 22)i;j = - h2Tx C O s e C  T4.x - - 
4 

The equation i s  solved as before i n  s tages  assuming x = C PS s i n  s$ 
S 

and subs t i t u t ing  it only on the  r igh t  hand s ide  of the  equation (264 i .e .  
I 

2 2  2 2 \'2 2 ' T  C Ps s i n  sSA 

The so lu t ion  of t h i s  equation follows analogous s t eps  t o  t h a t  i n  t h e  

hyperbolic s ine  ( D h r k a r ,  1937~) and the  exponential  curve cases .  

r- 

S (d2/dS2-a ) {sec  $s(d2/dz -a +$_)x] = - Ra rircosecnd 
c -- L 

It i s  s u f f i c i e n t  t o  point  out t h a t  a f irst  approxlmation with both 

boundaries f r e e  (Eayleigh type ) ,  correspodning c r i t e r i o n  wodd be given by: - 

( ~ + a ~ ) ~  . 2 1 7 2  R =  ;l-(?+a > r  - /4(1+a2)] 

, /  
i' 

The cr i te r io l?  of maximum possible  temperature d i f fe rence  between t h e  

bottom and t o p  l aye r s  i s  l e s s  than i n  t h e  constant temperature gradient  case.  

Tine p o s s i b i l i t y  of t h e  temperature height curve being convex upwards would 

be v e r  r a r e .  

Hence, t h e  c r i t e r i o n  of i n s t a b i l i t y  of a l a y e r  of heated f l u i d ,  p a r t i c u l a r l y  

i n  t h e  case of gasses,  depends on the  temperature height curve i n  t h e  f l u i d .  

While t h e  temperature d i f fe rence  between t h e  bottom and t o p  l aye r s  might be 

kii+L bllin . 

s t r u c t u r e ,  it might not be so  f o r  another one and v ice  versa .  

t h e  l i m i t s  of t h e  c r i t e r i a  of s t a b i l i t y  for one temperature height 



Bales (1935) determined t h e  c r i t e r i o n  of i n s t a b i l i t y  f o r  a compressible 

atmospheric l aye r .  

r a t e  w a s  a l i m i t  f o r  t h e  l aye r  t o  be s t a b l e .  

w a s  taken by him as a constant.  I n  the  atmosphere, a t  high l eve l s ,  o f ten  

turbulence i s  met with over shor t  periods.  There i s  not much evidence of 

super-adiabatic lapse  rates the re .  I n  add i t lon  t o  other  f a c t o r s  which might 

have induced such turbulence,  t h e  change i n  the  temperature height s t ruc tu re  

might a l s o  be considered as a e-mr ibutory  cause. One of t h e  f a c t o r s  which 

He found that i n  a dry atmosphere, t h e  ad iaba t i c  lapse  

The lapse  r a t e  i n s ide  t h e  l a y e r  

might be changing t h e  temperature height s t ruc tu re  may be the  r a d i a t i v e  

e f f e c t s  due t o  incursion of a d i f f e ren t  absorpt ive l aye r .  

example w a s  considered by the  author i n  1932). 

(An elementary 
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